Optofluidic Chip of a Single-Mode Fiber Variable Optical Attenuator
نویسندگان
چکیده
منابع مشابه
Single-mode fiber variable optical attenuator based on a ferrofluid shutter.
We report on the fabrication and characterization of a single-mode fiber variable optical attenuator (VOA) based on a ferrofluid shutter actuated by a magnetic field created by a low voltage electromagnet. We compare the performance of a VOA using oil-based ferrofluid, with one VOA using water-based 12 ferrofluid, and demonstrate broadband optical attenuation of up to 28 dB with polarization de...
متن کاملIn-line single-mode fiber variable optical attenuator based on electrically addressable microdroplets
We report an in-line, fiber optic, broadband variable optical attenuator employing a side-polished, single-mode optical fiber integrated on a digital microfluidics platform. The system is designed to electrically translate a liquid droplet along the polished surface of an optical fiber using electrowetting forces. This fiber optic device has the advantage of no moving mechanical parts and lends...
متن کاملIntegrated microfluidic variable optical attenuator.
We fabricate and measure a microfluidic variable optical attenuator, which consists of an optical waveguide integrated with a microfluidic channel. An opening is introduced in the upper cladding of the waveguide in order to facilitate the alignment and bonding of the microfluidic channel. By using fluids with different refractive indices, the optical output power is gradually attenuated. We obt...
متن کاملVariable optical attenuator and dynamic mode group equalizer for few mode fibers.
Variable optical attenuation (VOA) for three-mode fiber is experimentally presented, utilizing an amplitude spatial light modulator (SLM), achieving up to -28dB uniform attenuation for all modes. Using the ability to spatially vary the attenuation distribution with the SLM, we also achieve up to 10dB differential attenuation between the fiber's two supported mode group (LP₀₁ and LP₁₁). The spat...
متن کاملOptical particle sorting on an optofluidic chip.
We report size-based sorting of micro- and sub-micron particles using optical forces on a planar optofluidic chip. Two different combinations of fluid flow and optical beam directions in liquid-core waveguides are demonstrated. These methods allow for tunability of size selection and sorting with efficiencies as high as 100%. Very good agreement between experimental results and calculated parti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Photonics Journal
سال: 2017
ISSN: 1943-0655
DOI: 10.1109/jphot.2017.2672639